Field Experiment: Difference between revisions

From Design Science Research Methods
Jump to navigation Jump to search
No edit summary
Line 190: Line 190:
[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3
[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3


== Create Research Design ==
{{Create Research Design}}
=== Description ===
==== Survey ====
 
collect self-reported data of people
standardized questionnaire or interview
 
==== Simulation ====
state a hypothesis
imitate some real process or action to prove your hypothesis
suitable for observing the correlation between variables
 
==== Laboratory Experiment ====
 
independent variables are manipulated by the researcher (as treatments)
subjects are randomly assigned to treatment
results of the treatments are observed
 
==== Field Experiment ====
 
conducted in field settings, e.g. real organization
rare, because of the difficulties associated with manipulating treatments and controlling for extraneous effects in a field setting
 
=== Examples ===
 
=== Further Readings ===
[1] Myers, M. D. (2009). “Qualitative Research in Business and Management”, SAGE Publications: Auckland, New Zealand.
 
[2] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3.Available at: https://scholarcommons.usf.edu/oa_textbooks/3


== Pilot Testing ==
== Pilot Testing ==

Revision as of 08:53, 20 March 2020

Process description

General description of the process

Identify and Describe Research Problem

Description

State why the problem you address is important. Result: What did you observe and what is the data basis for the findings? Discussion: What are the findings, what is the basis for the findings, could I come to the same findings and how do the results contribute to the theory? Conclusions: What did you learn and what does your work contribute to the field? [1]

Examples

None

Further Readings

[1] Myers, M. D. (2009). “Qualitative Research in Business and Management”, SAGE Publications: Auckland, New Zealand.

[2] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

[3] Perneger, T. V. & Hudelson, P. M. (2004). “Writing a research article: advice to beginners”, International Journal for Quality in Health Care: Vol. 16, no. 3, pp. 191-192.

Describe Research Gap

Description

Identifying a research gap through

Gap-spotting

go through existing literature on your phenomenon What are we missing? Problematization: dialectical interrogation familiar position, other stances, and the specific domain

Types of research gaps

Methodological conflict: Questioning if findings on a certain topic are inconclusive with regard to applied research methods. Contradictory evidence: Synthesize key findings and determine contradictions. Knowledge void: Analyze literature with regard to theoretical concepts (e.g., using the chart method) and look for specific gaps or under-researched areas of research. Action-knowledge conflict: Collect information about the action and relate this information to the knowledge base. Evaluation void: Analyze if research findings have been evaluated and empirically verified. Theory application void: Analyze the theories that have been employed to explain certain phenomena and identify further theories that might contribute to the knowledge base as well.

Examples

Further Readings

[1] Sandberg, J. & Alvesson, M. (2011). “Ways of constructing research questions: gap-spotting or problematization?”, Organization: Vol. 18, no. 1, pp. 23-44.

[2] Müller-Bloch, C. & Kranz, J. (2015). “A Framework for Rigorously Identifying Research Gaps in Qualitative Literature Reviews”, International Conference on Information Systems (ICIS): Forth Worth, Texas, USA.

Define Key Constructs

Description

General:

A construct …

… is an abstract conceptual entity. … is inferred from observable actions or states of phenomena. … needs an operational definition to become measurable.

Construct clarity:

Captures essential properties and characteristics. Avoids tautology or circularity. As narrowly as possible, but still relevant and generalizable and its context. [2]

Examples

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

[2] Suddaby, R. (2010). "Editor's Comments: Construct Clarity in Theories of Management and Organization", Academy of Management Review, Vol. 35, no. 3, pp. 346-357.

[3] Bacharach, S. B. (1989). “Organizational Theories: Some Criteria for Evaluation”, The Academy of Management Review, Vol. 14, no. 4, pp. 496-515.

Articulate Research Question(s)

Description

What is determined by research questions?

Defines how to shape components of your research design. Points towards data collection and analysis techniques. Research designs vary for different kinds of research questions. Research questions can tend towards a qualitative or quantitative research. [1,3]

Examples

Types of research questions:

  • Artifact only: How to design ______ in order to achieve ______ (dependent variable(s))?
  • Prescriptive: What design principles/theory should guide the development of ______ in order to achieve ______ (dependent variable(s))?
  • Descriptive: How do ______ (independent variable(s) influence ______ (dependent variable(s))?

Further Readings

[1] Creswell, J. W. (2009). “Research Design – Qualitative, Quantitative, and Mixed Methods Approaches”, SAGE Publications: Auckland, New Zealand.

[2] Meth, H., Brhel, M. & Maedche, A. (2013). “The state of the art in automated requirements elicitation”, Information and Software Technology: Vol. 55, no. 10, pp. 1695-1709.

[3] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Collect Justificatory Knowledge

Description

Justificatory Knowledge.png

Covariance

describes relationship between two or more variables presents how they vary together (positively or negatively) no information about strength of relationship (not normalized)

Correlation

statements on strength possible (normalized covariance) always between -1 and +1 no information about direction of causality

Causality

defines the direction of the relationship between two variables relationships are described based on logical reasoning Example: “If it had not rained yesterday (cause), I would have gone for a walk (effect).” [1]

Examples

Accumulation and evolution of design knowledge [2]

Further Readings

  • Internal validity and external validity [3]
  • Analysis of expriments [4]


[1] Sarstedt, M. & Mooi, E. (2011). “A Concise Guide to Market Research – The Process, Data, and Methods using IBM SPSS Statistics”, Springer Publishers: Heidelberg

[2] Hevner, A., vom Brocke, J. & Maedche, A. (2019). “Roles of Digital Innovation in Design Science Research”, Business & Information Systems Engineering: Vol. 61, no. 1, pp. 3-8.

[3] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Define Dependent Variables

Description

General:

A variable...

... is observable directly (manifest).

... is empirically measurable.

... is a representation of an abstract construct (latent).

Dependent variables are explained by other variables.

Examples

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

[2] Burton-Jones, A. & Straub, D. W. (2006). “Reconceptualizing System Usage: An Approach and Empirical Test”, Information Systems Research: Vol. 17, no. 3, 228-246.

Derive Hypotheses

Description

General:

A hypothesis...

... states (expected) relationships between variables.

... is empirically testable.

... is stated in a falsifiable form.

… can be strong or weak.

… should clearly specify independent and dependent variables.

Examples

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Operationalize Dependent Variable(s)

Description

  • Operationalization refers to the process of developing indicators or items for measuring these (abstract) constructs.
  • Operationalize through levels of measurement (= rating scales: refer to the values that an indicator can take).

Levels of measurement:

statistical properties of rating scales

  • nominal scale
  • ordinal scale
  • interval scale
  • ratio scale
  • binary scale
  • Likert scale
  • semantic differential scale
  • Guttman scale

Examples

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Create Research Design

Description

Research Design.png

Survey:

collect self-reported data of people standardized questionnaire or interview


Simulation:

state a hypothesis imitate some real process or action to prove your hypothesis suitable for observing correlation between variables


Laboratory Experiment:

independent variables are manipulated by the researcher (as treatments) subjects are randomly assigned to treatment results of the treatments are observed


Field Experiment:

conducted in field settings, e.g. real organization rare, because of the difficulties associated with manipulating treatments and controlling for extraneous effects in a field setting

Examples

Further Readings

[1] Myers, M. D. (2009). “Qualitative Research in Business and Management”, SAGE Publications: Auckland, New Zealand.

[2] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3.Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Pilot Testing

Description

  • Pilot testing is an often overlooked but extremely important part of the research process!
  • helps detect potential problems in research design and/or instrumentation (e.g., whether the questions asked is intelligible to the targeted sample)
  • ensures that the measurement instruments used in the study are reliable and valid measures of the constructs of interest
  • pilot sample = small subset of the target population

Examples

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Sampling Strategy

Description

choose target population and a strategy of how to choose samples related to the unit of analysis in a research problem avoid a biased sample


Sampling approaches

Probability sampling:

  • technique in which every unit in the population has a chance (non-zero probability) of being selected
  • chance to be selected can be accurately determined
  • sampling procedure involves random selection at some point

methods: random sampling, systematic sampling, stratified sampling, cluster sampling, matched pairs sampling, multi-stage sampling

Non-probability sampling:

  • some units of the population have either zero chance of selection or the probability of selection cannot be determined accurately
  • selection criteria are non-random (e.g. quota, convenience)
  • estimation of sampling errors is not allowed
  • information from a sample cannot be generalized back to the population

methods: convenience sampling, snowball sampling, quota sampling, expert sampling

Examples

Probability sampling:

Cluster sampling:

  • divide population into clusters
  • randomly sample a few clusters and measure all units within that cluster

Matched pairs sampling:

  • two subgroups of population
  • compare two individual units from subgroups with other
  • ideal way to understand bipolar differences

Multi-stage sampling:

  • combine the previously described sampling technique
  • e.g. combine cluster and random sample

Random sampling:

  • all subsets are given equal probability of being selected
  • unbiased estimates of population parameters

Stratified sampling:

  • divided into homogeneous and non-overlapping subgroups
  • simple random sample within each subgroup

Systematic sampling:

  • sampling frame is ordered according to some criteria
  • elements are selected at regular intervals

Non-probability sampling:

Convenience sampling:

  • take a sample from a population that is close to hand
  • e.g. outside of shopping mall
  • may not be representative, therefore limited generalization

Expert sampling:

  • choose respondents in a non-random manner based on their expertise on the phenomenon
  • findings are still not generalizable to a population
  • e.g. in-depth study on an institutional factor such as Sarbanes-Oxley Act

Quota sampling:

  • segment population into mutually exclusive subgroups
  • take a non-random set of observations to meet pre-defined quota
  • pre-defined quota can either proportional (as the overall population) or non-proportional (less restrictive)
  • both are not representative of the population

Snowball sampling:

  • start criteria-based
  • ask respondents for further potential participants

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Data Collection

Description

Categories of data collection methods

Positivist methods:

  • aimed at theory (or hypotheses) testing
  • deductive approach to research, starting with a theory and testing theoretical postulates using empirical data
  • e.g.: laboratory experiments and survey research

Interpretive methods:

  • aimed at theory building
  • inductive approach that starts with data and tries to derive a theory about the phenomenon of interest from the observed data. e.g.: action research and ethnography

Type of data

Quantitative and qualitative methods refers to the type of data being collected:

  • Quantitative data involve numeric scores, metrics, etc. - (quantitative techniques: regression)
  • Qualitative data includes interviews, observations, etc. - (qualitative techniques: coding)

Examples

Data collection methods:

  • interviews
  • observations
  • surveys
  • experiments
  • secondary data

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Data Analysis

Description

  • “sense-making” approach
  • The data is analyzed and interpreted for the purpose of drawing conclusions regarding the research questions of interest.
  • Depending on the type of data collected (quantitative or qualitative), data analysis may be quantitative (e.g., employ statistical techniques such as regression or structural equation modeling) or qualitative (e.g., coding or content analysis).
  • Secondary data analysis: analysis of data that has previously been collected and tabulated by other sources (e.g., data from government agencies)

Examples

Further Readings

[1] Bhattacherjee, A. (2012). "Social Science Research: Principles, Methods, and Practices", Textbooks Collection. 3. Available at: https://scholarcommons.usf.edu/oa_textbooks/3

Write up Results

Description

Results

General:

  • Report on collected data (response rates, etc.).
  • Describe participants (demographic, clinical condition, etc.).
  • Present key findings with respect to the central research question.
  • Present secondary findings (secondary outcomes, subgroup analyses, etc.).

Briefly:

  • What did you observe and what is the data basis for the findings?
  • However, do not interpret or theoretically integrate findings yet!

Discussion:

General:

  • Refer to the main findings of your study.
  • Discuss how findings address your research question.
  • Discuss main findings with reference to previous research.
  • Discuss why results are new and how the findings contribute to the body of knowledge.

Briefly:

  • What are the findings, what is the basis for the findings, could I come to the same findings and how do the results contribute to theory?
  • However, do not judge or explain implications yet!

Conclusions

General:

  • Present scientific and practical implications of results.
  • Outline the limitations of the study.
  • Offer perspectives for future work.

Briefly: What did you learn and what does your work contribute to the field?

Examples

Further Readings

[1] Perneger, T. V. & Hudelson, P. M. (2004). “Writing a research article: advice to beginners”, International Journal for Quality in Health Care: Vol. 16, no. 3, pp. 191-192.